VALIDITY OF THE QUASIHOMOGENEOUS
APPROXIMATION FOR AN ANALYSIS OF
RADIATIVE HEATING IN AN AEROSOL STREAM

Z. R. Gorbis and F. E. Spokoinyi UDC 532.529.5:536.3

The thermal resistances in a stream are analyzed and the validity limits of the quasihomog-~
eneous approximation are established, on the basis of information about the temperature of
the phases during radiative heating.

In view of the trend toward higher operating temperatures in many heat and mass transfer processes,
with the advantages of using the radiative mechanism for heating a gaseous heat carrier, studies have been
made recently concerning the interaction between a high-temperature radiator and a gas stream which
carries finely-dispersed solid particles [1, 2, 3]. The suitability of such gaseous suspensions derives,
essentially, from the fact that most mono- and diatomic gases are diathermal within the practically im-~
portant temperature range up to 5000°K and that, therefore, adding a definite amount of finely-dispersed
solid particles of a highly absorptive material ensures the necessary absorption characteristics of the
stream.

We may also point out a similar process occurring in nature, namely the interaction between solar
radiant heat and the dustyatmospheres of Earth, Mars, ete. For calculating the heat transfer from the
radiator to the gas in such systems, one often uses the model of a quasihomogeneous medium with effective
thermophysical and optical properties. This convenient and in many cases sufficiently accurate approach
has, however, also the following shortcomings.

The complex process of heat transfer is simplified here by disregarding the effect of radiation scat-
ter at the particles, and yet the amplitude of the real scatter function is sometimes quite large [3]. It is
not possible to account for the true concentration field of a stream and for the polydispersivity of the dis-
persing phase. Any effect of the interphase heat transfer on the rate of change of particle enthalpy is ig-
nored completely, along with the rate of net heat transfer from the radiator to the gas. The significance
of the latter factor will be analyzed in this article.

Establishing the validity limits of the quasihomogeneous approximation requires a comparative
analysis of the process rates at various stages of heat transfer from the radiator to the gas. The homog-
eneous model is obviously unsuitable for this purpose, in principle, and it is necessary to consider the
actual system structure where solid aerosol particles serve essentially as the intermediate heat carrier.
In this case radiative heating of the gas is effected in several steps: the thermal radiation is absorbed by
particles during the first stage, part of the heat then raises their enthalpy and part is transmitted to the
gas by the interphase heat transfer mechanism. The first stage will not be considered here any further,
as it has been treated already in many studies dealing with the problem under substantial simplifications
[4, 5]. Both the second andithe third stage have been explored to a much lesser extent, and the approxima-
tion of existing solutions to the problem is thus compounded [6, 7]. In view of this, an approximate theoreti-
cal and numerical analysis was performed in [8] on a more complete basis, and the results will be used
here.

This analysis is based on the knowledge of processes occurring in a typical heterogeneous cell, such
a cell model having been proposed earlier for the study of gaseous dispersions flowing through ducts [9].
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Under the conditions of our problem, the cell boundaries are adiabatic and, under certain stipulations (that
the particles be sufficiently small to limit the interphase heat transfer to conductive heat transfer only, that
the particles be spherical and equal in size, that the properties of both phases vary very liftle during heat-
ing, and that the radiation emitted by particles be negligible in comparison with the radiation absorbed), the
conduction of heat is described by the following system of equations:
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This system, in the dimensionless version, was solved numerically on 2 model M-220 computer. As a
result, we have obtained data on the trends of local and mean temperatures in both phases, on the Nusselt
number as a function of the heating time, on the concentration of particles, and on the thermophysical
properties of both phases. Assuming a zero-gradient temperature field inside a particle, we have simpli-
fied system (1) substantially and have obtained an approximate analytical solution by the Goodman integral -
method [8]. When the original heat wave has reached the cell boundaries and a temperature field has been
established, then the mean temperatures of both phases can be described by the following relations:
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According to the numerical solution, the Nusselt number decreases rapidly from infinity toward the thres-
hold level Nug = 2 + 330'28 as the Fourier number increases, which agrees also with Eq. (4), and it thus
exceeds the usually accepted value 2.0 by an amount which increases with the concentration of particles in
the stream. The mean phase temperatures calculated numerically agree with those based on formulas (2)
and (3) beginning already at Fo* =~ 1072, Moreover, the initial process stage is characterized by an almost
constant gas temperature leading the temperature of heated particles. This information about a tran-
sient (in terms of conductive heat transfer) of a cell allows us to evaluate the significance of the various
process stages as well as the total and the component thermal resistances. We will apply the conventional
method of comparative analysis to each component thermal resistance, for an evaluation of the net heat
transfer and for pinpointing that process which limits its rate. From the viewpoint of the homogeneous
model, only radiative heat transfer imposes some limitations on the heating rate. Let us consider this
from the viewpoint of the heterogeneous model. If Q denotes the amount of heat transmitted per unit time
from the radiator to the gas and F* denotes some conveniently defined effective surface area in the appa-
ratus, then the rate of the resulting process can be evaluated in terms of a quantity whose significance is
that of a transmission coefficient k. The thermal resistance Ry will then be inversely proportional to this
coefficient k:
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This amount of heat Q is transmitted from the particles to the gas by the mechanism of interphase heat
transfer,
L 5T (®)
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The amount of heat radiated from the source and absorbed by the particles is
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Here Qg is determined from the change of enthalpy of solid particles, in accordance with the heat balance
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Let us express the total thermal resistance R in terms of its components. For this purpose we write (5)
as
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According to the definition of the component thermal resistances (6)-(7), we have
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The term Rg accounts for the decrease in thermal flux due to heat accumulation in the particles and it is
equivalent to the thermal resistance of the particles, referred to conditions of sequential heat propagation.
Since in the steady-state heating stage (r — «) 6Tg = 6T, hence

Rsw= Rz R ,=R, (1 --2)-R. (12)

On the other hand, in the initial stage there appears an additional thermal resistance due to prior heat ac-
cumulation in the particles
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For the individual components of the total thermal resistance, referred to the resistance to radiative heat
transfer, we have
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The quasihomogeneous approximation corresponds to the exireme case of an infinite rate of inter-
phase heat transfer (Nu — «) and equal heating rates of both phases 6Tg = 8T. Then, according to expres-
sions (14)-(16),
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Unlike in a quasicontinuous medium, therefore, in a real gaseous suspension there appear two addi-

tional resistances to heat transfer from radiator to gas: they are a consequence of the finite rate of ther-

mal interaction between both phases, namely a resistance R/Ry to direct interphase heat transfer and a

resistance ARg/Ry due to prior heating of the particles in the initial process stage.

In order to illustrate the significance of these two additional thermal resistances, we have shown
some results of calculations in Figs. 1 and 2. The components of the total thermal resistance R;/R, are
shown in Fig. 1a for a system of graphite particles suspended in nitrogen (N,—C) under a pressure P =1
bar, at a temperature T = 1000°K, and with a relative mass flow rate p = 1 kg/sec/kg/sec, as a function
of the Fourier number (dimensionless process time) and determined on the basis of the approximate theo-
retical solution (top curve) as well as on the basis of numerical calculations on a digital computer (bottom

677



R
:n% A b
3 o
2 \ ]
1 P,

12 ] X or
077 1 2] 3 ¢ 5 7 I O I I
_[ I’ "
~Z '] rl
s ! !

-4

Fig. 1. Relative thermal resistances as functions of
the Fourier number Fo: 1') R/Ry (83 =10); 1") R/Rp
3 =10%; 2)Ry/Rp= R4 +By)/Rp=1+1z; 4)

By +Rgeo + ARgw)/Ry.

#e [Ry curves), The trend of the curves calculated for other con-
{;;“:_}_ 42 LA ditions in the Ny—C system was similar. It must be noted
! i that the results obtained by both methods are in satisfac-
a8 7 Ly tory agreement, confirming the validity of formulas (2)
) ’ / and (8) for Fo* = 107",

_ Z/ . ) / : The dimensionless temperature of the radiator,
o= ’ T evaluated under various conditions, is #; > 10. The rela-
42 ? }/ 41 4 tive resistance R/R, is here always low and much less
’ . //‘ than unity (curves 1). The relative resistance to radia-

Pt w wt o yet w7 0 00 e T tive heat transfer is equal to unity, by definition, and in-

dependent of the Fourier number Fo (curve 2), and is the
limiting thermal resistance of particles Rg /Ry equal to

z (curve 3). Moreover, the additional resistance ARg/Ry
is quite appreciable in the low range of the Fourier num-
ber (ARg/Ry > 1, curve 4) and vanishes as the heating mode becomes regular with time. Analogous curves
plotted for a system of submicron tungsten particles in hydrogen (P = 100 bars, T = 2000°K, u = 0.01 kg
/sec/kg/sec) are shown in Fig. 1b.

Fig. 2. Total thermal resistance as a func-
tion of the Fourier number Fo*.

In Fig. 2a, b are shown, respectively, the local values of Ry/RT = kF*/ayFg and those averaged
over the process time, i.e., of the heat transfer rate referred fo the rate of radiative heating o of
particles. On the same diagram is also shown the Rr/R-’f curve based on the quasihomogeneous approxi-
mation according to formula (17).

The relative thermal resistance was averaged as follows:
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When F* = Fg, according to the data, then Ry/RT equal to k/ay varies throughout the heating pro-
cess, until at a certain Fo* = Fo}._ a constant final level is reached which corresponds to a transition to
regular radiative heating of the gas by the particles. The numerical value of this final resistance ratio,
always less than unity, depends on the characteristics of the aerosol system R,./Rp), = (1 + z)"!. For
instance, for hydrogen-—tungsten (H,~W) systems it is very close to unity (curves 1 and 2 in Fig. 2a) so
that 7 = 10~ or 1073 (1 = 1072 or 107}, respectively), while for nitrogen—grarhite (N,—C) systems k/ar)
= 0.875 or 0.4 when p = 10~ (curve 3) or 1.0 kg/sec/kg/sec (curve 4), respectively, with z = 0.15. The
average values of k/a are the same, but after some longer period of time they increase less with in-
creasing Fo* than the instantaneous values (curves 1' and 4' in Fig. 2b), which corresponds to the usual
relation between average and instantaneous values.

{1 — exp [—-— % NuFo*(1+ z)]} .

A comparison between the dashed and the solid curves indicates that in each case (Fig. 2a, b) the
quasihomogeneous approximation (dashed lines) yields for the initial process stage (small values of Fo)
a value for the rate of gas heating which becomes increasingly too high as Fo* drops further below Fohm.
Characteristically, Fohm does not depend much on the properties of the dispersion system and changes
slightly, as has been noted earlier, whena conversionis made from instantaneous toaverage values. Thus,
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under the conditions P =1 or 100 bars, T = 2000°K, u = 1072 to 10, and &y =10 to 10%, one may assume
that approximately Foikim = 1 for the instantaneous values of (k/a-)®RT/Ry) and Fo{im =~ 10 for the average
values f{/aT. Only at Fo* > Foi“im does the quasihomogeneous approximation become valid, inasmuch as

now the process is regular and ARS/RI‘ = 0 and the resistance to intrinsically interphase heat transfer be-
comes negligible,

Thus, when calculating relatively short processes of radiative heating in a dispersion system, re-
placing such a system by a homogeneous medmm with effective properties can lead to errors which be~
come greater at smaller values of Fo* below Fohm =1 (for instantaneous values of the relative rate of
heat transfer from radiator to gas) or F°11m =10 (for average values k/ar In those cases, calculations
and analysis of the heating process must take into account the heterogeneous structure of the stream and
the fixiite rate of interphase heat transfer. The quasihomogeneous approximation may be considered valid
at Fo* = Fofjpy-

These results are based on the earlier assumptions and, as has been mentioned already, do not ap-
ply to the case of radiative heat transfer from particles; the purpose of this analysis was to emphasize
those stages in the process of gas heating by solid particles which are usually disregarded in conventional
analysis. Obviously, an analysis of heat radiation in the heterogeneous approximation presents a separate
and even more difficult task.

Another not less important problem has not been considered here, namely an analysis of this process
with changes in the aggregate state of solid sols, i.e., their fusion and subsequent evaporation, also taken
into account. It is evident, furthermore, that the results obtained here are valid only for systems with the
Knudsen number Kn < 1072, which is the case under the process conditions which have been cousidered
here.

NOTATION

T is the temperature;

T is the time;

rg is the particle radius;

Te is the cell radius;

8 is the true relative volume flow rate;
U is the true relative mass flow rate;
A is the thermal coanductivity;

a is the thermal diffusivity;

Nu is the Nusselt number;

Fo is the Fourier number;

C is the specific heat;

o is the heat transfer coefficient;

k is the heat transmission coefficient;
F is the surface area;

R is the thermal resistance;

Q is the thermal flux;

kf is the absorptivity.

Subscripts
s denotes the solid phase;
T denotes total;
i denotes initial temperature.
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